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ABSTRACT 

This paper argues that the social cost of carbon (SCC) should not be used to determine energy policies. The SCC, 

which is supposed to represent the avoided cost of greenhouse gas emissions, has been used to justify state and 

federal energy policy decisions, such as offshore wind procurements and the U.S. Environmental Protection 

Agency’s vehicle emissions standards. This paper argues that SCC values should not be used, not because climate 

change is not real, but because the approaches used to estimate SCC values, primarily through integrated 

assessment models (IAMs) but also using expert opinions, are based on layers of arbitrary and unverifiable 

assumptions. The reasons why include: (i) the hubris of believing it is possible to develop accurate forecasts 

regarding technological developments 300 to 1,000 years into the future; (ii) the fundamental uncertainties 

underlying SCC estimates, such as defining the pre-industrial time period and measuring world temperatures 

during that period; (iii) the inherent arbitrariness of weighing the welfare of future generations versus the welfare 

of the current generation; and (iv) the inequity of imposing higher economic costs on today’s generation to 

primarily benefit future generations who are expected to be far better off; and (v) that none of these policies, 

either individually or collectively, will have any measurable impact on world climate, given the increased 

emissions in developing countries whose primary focus is on economic growth and improved well-being for their 

citizens. The paper concludes by recommending that, as demand for energy increases over time, the most 

advantageous policies will focus on stimulating additional research to develop low-cost, reliable, and emissions-

free energy resources. Doing so will provide greater long-term benefits than the current practice of skewing 

energy policy decisions to favor specific types of technologies and adopting policies that raise costs today. By 

raising energy costs and, thus, the costs of all goods and services, these policies impose real economic damages 

today while having no measurable impact on world climate. 

KEYWORDS: benefit-cost analysis, social cost of carbon, equity, uncertainty. 
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1. INTRODUCTION 
The social cost of carbon (SCC) is a measure of the cost of additional greenhouse gas emissions. These emissions 

are typically expressed in carbon dioxide equivalents (CO2-e), based on their estimated warming impact relative 

to carbon dioxide. Most SCC values have been developed using integrated assessment models (IAMs), which 

combine simple models that link forecast greenhouse gas emissions to changes in world and (depending on the 

IAM) regional temperatures, with models that estimate the damages resulting from those temperature changes. 

IAMs calculate the marginal cost of an additional metric ton of CO2 emitted today based on the estimated costs, 

typically in terms of reduced economic welfare measured by reductions in gross domestic product (GDP). A less 

common approach has been to use surveys of experts to estimate average SCC values.2 Still other approaches 

recommend specifying a timeframe for achieving net-zero emissions and then determining the necessary carbon 

taxes (and other policies) to achieve it. 

SCC values derived from IAMs vary widely, from values below $0 (meaning that additional carbon emissions are 

beneficial) to costs over $2,000 per metric ton. This wide range of values is a consequence of differences in the 

models and different assumptions about fundamental parameters that cannot be observed. Alternative measures 

that seek to avoid the problems with IAMs, such as those based on surveys of experts, also differ widely (Pindyck 

2019). Moreover, there is always uncertainty as to the basis for experts’ responses. For example, if those surveyed 

base their responses on the results of IAMs, then surveying experts may be the equivalent of chasing one’s tail. 

Unfortunately, what information experts base their answers on is not known. Still other alternatives, such as setting 

an arbitrary timeline for reducing emissions, called “Near Term to Net Zero” (NT2NZ) (Kaufman, et al. 2020), 

and then backing into the the SCC values needed to achieve the timeline, suffer from their own flaws.  

Despite their deficiencies, IAM-based SCC estimates have been used to rationalize policies that increase energy 

costs, reduce consumer choice, and thus reduce economic welfare. In the U.S., for example, SCC estimates have 

been used to justify subsidized investments in intermittent wind and solar power, stricter vehicle mileage standards 

and electric vehicle mandates, low-carbon fuel standards, subsidies for so-called “green” hydrogen facilities, 

mandatory building electrification, energy efficiency standards for household appliances, greenhouse gas cap-

and-trade programs, and others. Yet, the economic costs of these policies, especially the economy-wide costs of 

higher energy costs, are rarely evaluated or even considered. Moreover, because the SCC reflects global costs (or 

benefits), its use creates important distributional impacts for U.S. energy consumers who, as a result of these 

policies, face higher costs while receiving virtually no benefits from any realized emissions reductions.3 

For example, the State of New Jersey has established a goal of acquiring over 11,000 megawatts (MW) of offshore 

wind capacity. Potential offshore wind developers submit proposals that specify the prices they propose to be paid 

over the duration of the projects (typically, 20 – 25 years), as well as various other “benefits” they promise to 

provide, such as jobs.4 The evaluations of these proposals have included benefit-cost analyses. Although these 

analyses are redacted based on confidentiality concerns (itself problematic for transparency), it is possible to 

recreate the analyses and estimate specific categories of costs and benefits. Doing so reveals that over half the 

claimed benefits arise from carbon reductions (O’Donnell 2024). Even if one were to accept the accuracy of other 

benefits (including the classification of transfer payments as benefits), the projects would fail a benefit-cost test 

without including the value of avoided carbon emissions.5 Moreover, the resulting increases in electric rates, 

amounting to billions of dollars per year, are dismissed as inconsequential (Storrow 2024). 

Similarly, the US EPA’s regulatory impact analysis of its proposed multi-pollutant vehicle emissions standards 

(EPA, 2024) showed that carbon emissions reductions were the single largest source of estimated benefits, with a 

present value of $1.6 trillion (2022 dollars), approximately double the estimated future fuel savings of $820 

billion.6 Moreover, the EPA admitted that the estimated benefits would be realized only if all other countries base 

their energy policies on these same SCC estimates. Nevertheless, the EPA argues that, by imposing additional 

costs on its own populace, the US will encourage other countries to do the same. That argument lacks credibility, 

as there is no evidence that developing countries, which account for the majority of carbon emissions and whose 

emissions are increasing, unlike emissions from OECD countries, intend to adopt policies that prioritize reducing 

emissions over policies that increase economic growth and the welfare of their populations. 

Because policymakers may be unfamiliar with the inherent problems with those models (and the problems with 

the alternatives), this paper addresses key empirical weaknesses, as well as key weaknesses with several 

alternatives to IAMs that have been proposed. Given the inherent uncertainty in SCC estimates of all types, a key 
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question is whether it is appropriate to base energy policy decisions on those estimates and the resulting values of 

avoided CO2-e emissions.  

The remainder of this paper is organized as follows. In the next section, I provide a short discussion of the most 

commonly used IAMs and the key parameters that drive the SCC values these models produce. Next, I focus on 

two areas that account for most of the damages estimated by IAMs: losses from agricultural productivity and 

human health impacts. Although SCC values calculated by IAMs are highly sensitive to the choice of discount 

rate, the literature on the “correct” discount rate is vast.7 Moreover, given the flaws in estimating future 

agricultural and health costs, the choice of discount rate used to convert those future costs into present values is a 

secondary issue. 

Next, I critique the alternative approaches to estimating SCC values using IAMs that have been proposed. Finally, 

I conclude with an entirely different policy recommendation: abandon SCC estimates of any kind when making 

energy policy decisions and, instead, focus on research and development efforts to develop clean, reliable, and 

low-cost energy resources. Doing so will reduce greenhouse gas emissions while ensuring improved well-being 

for all, especially energy-starved individuals in developing countries. 

2. A BRIEF SURVEY OF MAJOR IAMS 
IAMs are both complex and simplistic. They are complex computer models that combine projections about future 

changes in world temperatures stemming from increased GHG emissions with projections of the future impacts 

of those higher temperatures and their projected costs. These costs include impacts on human health, changes in 

agricultural productivity, and the costs of mitigating certain types of damages, such as the expenses associated 

with building higher seawalls to limit damage from rising sea levels. More detailed models also examine 

distributional impacts, such as the impacts on developing nations versus developed ones. They are simplistic in 

that the potential damages from future climate are boiled down into a few equations. Some models, such as FUND 

and GIVE, build up SCC estimates from individual types of damages; others (Lint and Nordhaus 2024) take a 

top- down approach that posits a single worldwide damage function encompassing the breadth of projected climate 

change impacts. 

Although numerous IAMs have been developed,8 three primary models have been used to develop SCC estimates 

that have been by U.S. policymakers. These are: (i) Dynamic Integrated Climate and Economy (DICE) (Nordhaus 

1992); (ii) Framework for Uncertainty, Negotiation and Distribution (FUND) (Tol 1997); and (iii) Policy Analysis 

of Greenhouse Effect (PAGE) (Plembeck, et al., 1997). 

More recently, the Greenhouse Gas Impact Value Estimator (GIVE) model was developed by Resources for the 

Future and the University of California-Berkeley (Rennert, et al. 2022), which is similar in structure to the FUND 

model. Additionally, the Data-Driven Spatial Climate Model (DSCIM) developed at the University of Chicago’s 

Climate Impact Lab (EPA 2023) has been used by the US Environmental Protection Agency (EPA) for the 

agency’s regulatory impact analyses.9 Although the Trump Administration has rescinded the EPA guidelines, 

SCC estimates are still used by state policymakers, such as in setting prices for state-level emissions trading (“cap-

and-trade”) programs.  

Of the different IAMs, the FUND model is the most detailed. It breaks the world into 16 separate regions and 

develops “bottom-up” estimates of damages associated with changes in agricultural production, different types of 

health impacts (e.g., deaths from tropical diseases, heart attacks from hot and cold weather), changes in forest 

cover, loss of water resources, and even extreme weather. 

The academic literature is overflowing with debates over model specifications, discount rates, technological 

changes, future uncertainty, tipping points at which catastrophic climate impacts may occur, intergenerational 

equity, and other aspects.10 Most recently, SCC estimates developed with IAMs have been based on projections 

that extend 300 years and, in some cases, 1,000 years into the future. These three-century and longer forecasts, 

coupled with lower discount rates, have increased previous SCC estimates (IWG 2010, EPA 2013, EPA 2016) 

that were adopted by the US government by 400% or more (EPA 2023). When these new, higher SCC values are 

used, they can represent a majority of the benefits of different energy policies being pursued by individual US 

states and the US government.  

The general structure of these IAMs is shown below (Figure 1). The two topmost items – the Socioeconomics 

module and emissions calculations – are typically exogenous to the models. That is, they are developed 
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independently and then used to calculate future damages from GHG emissions. The socioeconomic module 

provides forecasts of future world population and economic well-being, as measured by gross domestic product 

(GDP), and resulting GHG emissions. The rationale is that, as population and wealth increase, so will GHG 

emissions. 

Figure 1: General Structure of an Integrated Assessment Model 

 

Source: Adapted from National Academy of Sciences (2017). 

The scenarios used by IAMs are called Shared Socio-economic Pathways (SSPs) (Riahi 2017)11 were developed 

by the Intergovernmental Panel on Climate Change (IPCC) in its reports provide forecasts through the year 2100. 

Most of these scenarios are based on ones first developed at Stanford University in the 1990s.12 However, the 

most recent estimates of the SCC are based on predictions extending 300 or more years into the future. Therefore, 

these socioeconomic forecasts must be extended. The FUND model, for example, uses population and income 

forecasts from these scenarios and extrapolates them through the year 3000.13 As is well known to econometrics 

students, forecast uncertainty increases over time (Chatfield 2001), which renders forecasts that extend 10 – 20 

years into the future dubious. Accurately predicting the state of the world, including the state of technology, health 

care, agriculture, and so forth, 300 years or more is impossible. Imagine asking someone in 1725 (George 

Washington was born in 1732) to predict the state of the world today and the technologies we take for granted. 

Each scenario is based on various combinations of population growth, income and economic growth, energy 

consumption, and carbon emissions. The scenarios include an assumed “business as usual” case, from which the 

social cost of carbon is derived based on the cost of mitigating the modeled climate impacts of that scenario. 

Importantly, the forecasts are exogenous to the IAMs, that is, they are based on hypothesized forecasts of future 

economic growth, population, technology, and resulting GHG emissions. One controversy has been the use by 
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many researchers of a specific SSP, called “Representative Concentration Pathway” (RCP) 8.5, which posits an 

extreme future that assumes rapid population growth, accompanied by rapid increases in fossil fuel consumption 

and a global temperature increase over 5 ⁰C by the year 2100 (Hausfeather and Peters 2020). 

The emissions that determine the concentrations of GHGs are based on exogenous scenarios that are inputs to the 

IAMs. For example, the FUND model estimates future CO2 emissions as a function of four factors: (1) the carbon 

intensity of energy use over time (i.e., how much CO2 is emitted per unit of energy consumption); (2) the energy 

intensity of the economy over time, measured as energy consumption per dollar of real GDP; (3) GDP per capita; 

and (4) population.14 The parameters that determine carbon intensity and energy intensity of the economy through 

the year 2300 for each region are guesses based on extrapolations of historical data.15 Assumptions about the 

quantities of methane and nitrous oxide are based on assumptions from the first IPCC report in 1992 and then 

extrapolated through the year 2300.16 The DICE model uses a somewhat similar approach to estimate future GHG 

emissions from industrial sources and land-use emissions. For both, baseline emissions are a function of total 

output, emissions intensity per unit of output, and the presence of emissions controls.17 The heart of all IAM-

based SCC estimates is how those models determine damages related to increased concentrations of GHGs and 

the resulting impacts from higher temperatures. The models approach damage estimates in two different ways. 

The first is a “top-down” approach that aggregates different types of damages into a single damage estimate that 

is a function of increased temperatures. 

The DICE and PAGE models employ a top-down approach, although the PAGE model categorizes damages into 

economic and non-economic categories, while the DICE model separates damages associated with sea level rise 

from those associated with other factors.18 The second approach is a “bottom-up” method that estimates damages 

for various categories (e.g., health, agriculture, extreme weather, energy consumption, and dryland losses). The 

FUND and GIVE models are examples of this second approach. The FUND Model, for example, estimates 

damages for 14 separate categories (Antoff and Tol 2019). 

3. THE UNCERTAINTY AND UNKNOWABILITY OF KEY IAM INPUTS 
On top of the exogenous assumptions about future energy intensity and carbon intensity, the sensitivity of world 

temperature to changes in GHG concentrations is unknown, and different IAMs make different assumptions about 

the relationship between GHG concentration and temperature changes (Roe and Baker 2007). The key parameter 

in these relationships is climate sensitivity. Roe and Baker assume climate feedback is positive and increasing, 

whereas the physics of warming suggests positive, but decreasing (Meinhausen 2011). More recently, research 

has found negative feedback owing to additional cloud formation (Eschenbach 2023).19 Another issue is the 

starting point temperature from which the temperature increases are measured. That starting point is taken to be 

an estimate of the “pre-industrial” temperature of the earth. Some IAMs, such as DICE, assume that increases in 

world temperature above the pre-industrial level are assumed to impose damages. Others, such as PACE and 

FUND, use pre-industrial temperatures as a base from which to model the impacts of temperature increases, but 

do not assume those temperatures are optimal. 

The use of a pre-industrial temperature in IAMs raises four key questions: (1) what time period defines “pre-

industrial” (2) how is the pre-industrial temperature measured for that time period; and (3) what is the basis for 

assuming the measured temperature is “optimal;” and (4) what does “optimal” even mean in that context? If one 

graphed climate damages versus average world temperature, it would show increasing damages as GHG 

concentrations fell. For example, plants die at CO2 concentrations below 150 parts per million, which would cause 

all animal life to perish.  

There is no specific definition of the pre-industrial period. The IPPC defines it as the period 1850-1900; others 

have used the period 1720-1800. Both periods coincide with the end of the Little Ice Age, which is believed to 

have begun in the early 1400s. However, prior to 1850, there were few consistent temperature records, making a 

determination of the global average temperature uncertain. 

 Hence, estimates of warming since pre-industrial times are largely based on guesswork. It was not until the 1970s 

that satellite measurements, acknowledged to be the most accurate means of measuring atmospheric temperatures, 

began. Finally, even if one were to define the pre-industrial period and develop an accurate measure of the average 

global temperature during that time, it would still be impossible to define its optimality. The FUND model, which 

disaggregates the world into 16 subregions, bases damage calculations on pre-industrial temperatures in each of 

those subregions. We know little about the average pre-industrial world temperature; we know even less about 



Journal of Advance Research in Food, Agriculture and Environmental Science ISSN 2208-2417 

Volume-11 | Issue-01 | Sep, 2025 
31 

 
 

 

regional variations. Hence, global climate models are calibrated to the change in temperature between an arbitrary 

pre-industrial period to the present.  

4. AGRICULTURAL AND HEALTH IMPACT DAMAGE FUNCTIONS 
Several IAMs, notably the FUND and GIVE models, disaggregate damages into specific categories. The FUND 

model provides the most disaggregated damage estimates, including health- related damages, agricultural losses, 

water losses, reductions in the amount and value of forested lands, changes in energy consumption for heating 

and cooling, damages from sea-level rise, damages to ecosystems, and damages from extreme weather events. 

These damages are estimated at least 300 years into the future. 

Previous analyses using the FUND model found that increased energy consumption accounted for the 

overwhelming majority of estimated climate damages (Cromar, et al. 2021). However, more recent estimates, 

such as those using the GIVE model, indicate that the largest SCC components are health-related (including 

additional deaths and illnesses) and agricultural damages.20 Consequently, I focus on those two categories of 

damages. 

4.1 AGRICULTURAL IMPACTS 
The agricultural impact estimates in the FUND model are based on various studies, (Anotff and Tol 2019), which 

were then manipulated (Tol 2002). The agricultural impact estimates in the GIVE model are based on Moore, et 

al. (2017), based primarily on climate model simulations (Challinor, et al. 2014), rather than empirical 

observations of changes in crop yields. Moore, et al. (2017) reanalyzed the Chalinor, et al. (2014) data and 

determined that the agricultural losses would be even more severe. 

Whereas Challinor, et al. (2014) estimate a single equation model for climate impacts,21 the FUND model 

evaluates the overall agricultural impact by summing up three categories for each of its 16 regions: (1) the lost 

production owing to imperfect adaptation; (2) the deviation from an “optimal” temperature (i.e., changing 

temperatures can move a region either towards or away from this optimal temperature) since 1990; and (3) the 

effect of CO2 fertilization (i.e., higher atmospheric CO2 concentrations since their pre-industrial level (assumed to 

be 275 parts-per-million). Impact (1) is always negative; impact (3) is always positive; and impact (2) can be 

either positive or negative. 

Thus, the overall impact on agricultural productivity, At ,r , for region r in year t, is: 

where: AS = the reduction in output because of farmers’ inability to adapt 

to temperature changes,                  the change in output as the temperature deviates from the optimal temperature, 

and            the increase in output because of CO2 fertilization. The effects of CO2 fertilization on plant growth are 

well-known and the FUND model assumes a logarithmic impact. 

The equations for the effects of an inability to adapt to changing temperatures and deviations from an optimal 

temperature are 

The specific equations for each are: 

 

where: 

• Δ𝑇 denotes the change in the regional mean temperature (in degrees Celsius) between time 𝑡 and 𝑡−1; 

• 𝛼 is a parameter, denoting the regional change in agricultural production for an annual 

• warming of 0.04° C; 

• 𝛽 = 2.0 (1.5-2.5) is a parameter, equal for all regions, denoting the non-linearity of the reaction 
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• to temperature; 𝛽 is an expert guess; 

• 𝜌 = 10 (5-15) is a parameter, equal for all regions, denoting the speed of adaptation; 𝜌 is an 

• expert guess. 

• 𝑇t denotes the overall change (in degree Celsius) in regional mean temperature relative to 1990; 

•                       are regional parameters that follow from the regional change (in per cent) in 

• agricultural production for a warming of 2.5°C above today or 3.2°C above pre-industrial and 

• the optimal temperature (in degree Celsius) for agriculture in each region; and 

•         are regional parameters. 

Antoff and Tol (2019) provide the parameters and their standard deviations for each region.22 As discussed by 

Tol (2002), the parameters were estimated based on combining multiple analyses that all used computable general 

equilibrium models. In other words, the parameters are not based on empirical observation. Examining those 

parameters shows that most are not statistically different from zero. Furthermore, as they note 𝛽 and 𝜌 are guesses. 

As shown in equation (1), if the annual change in world temperature is 0.04° C, then the choice of 𝛽 has no impact 

on the value of , .     . 

The model also assumes that changes in regional temperatures are all identical to the change in world temperature, 

even though there is no empirical evidence for this. The values of 𝛽 and 𝜌 have a noticeable impact on the 

calculated loss of agricultural output from imperfect adaptation. This is shown in Figure 2 using the parameters 

for the U.S. and assuming an annual temperature change of 0.03° C. As this figure shows, depending on the values 

selected for these two parameters, an annual change in temperature of 0.03° C results in between a cumulative 

loss of between 4.09% and 19.08% in U.S agricultural output. 

Figure 2: Loss of U.S. Agricultural Output from Imperfect Adaptation (0.03° C Annual Temperature 

Change). 

 

What is more curious is that, by 2025, all or most of the presumed output losses will have already taken place.23 

Yet, the marginal factor productivity of U.S. agriculture has grown steadily since 1990, albeit at a slower rate than 

during the middle of the last century (Pardey and Alston, 2021). 
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Despite the observed increase in agricultural productivity, Ortiz-Bobea, et al. (2021) claim that climate change 

reduced agricultural output by 21% since 1961, equivalent to 7 years of productivity growth. But the loss of 

agricultural output is based on output models that cannot be verified. They also find that the largest impacts were 

in warmer regions such as Africa and Latin America. 

More recently, Hultgren, et al. (2025) claim to have estimated agricultural impacts that account for the effects of 

adaptation by producers, even though they admit their approach does not identify the actual adaptation 

mechanisms. They then project future agricultural losses through the end of the century.24 Curiously, contrary to 

the findings of Ortiz-Bobea, et al. (2021), they determined that the worst impacts would be in more temperate 

regions. 

Recently, McKitrick (2025) examined the Chalinor, et al. (2014) meta-analysis that is the basis for both the FUND 

and GIVE model impact estimates and rebuilt the dataset by including the data points that had been excluded. 

Incorporating these rebuilt data, he found that, contrary to the results of Chalinor, et al. (2014) and Moore, et al. 

(2017) that agricultural yields would either be unchanged or positive up to 5 ⁰C of warming. 

Overall, the contrary results of various studies and the inability to measure adaptation reveal that future 

agricultural losses are far from certain. The models of agricultural productivity cannot adequately account for 

adaptation because adaptation cannot be observed directly. Moreover, claims of adverse impact of warming 

temperatures on agricultural productivity are clearly sensitive to the data used. 

HEALTH-RELATED IMPACTS 
Health-related impacts have generally focused on mortality impacts. For example, Carleton, et al. (2022) estimate 

a model that aggregates all forms of mortality using a function of temperatures and adaptation, represented by 

increases in GDP. They claim their model increases the health impact damages by an order of magnitude over 

previous estimates. 

The FUND model uses a more granular approach to estimate health-related impacts. Specifically, FUND 

incorporates three categories of health impacts: (1) deaths (mortality) and illness (morbidity) from diarrheal 

diseases; (2) deaths and illness from vector-borne diseases (i.e., diseases spread by biting insects, specifically 

malaria, schistosomiasis, and dengue fever); and (3) death and illness from cardiovascular disease. Of these 

categories, 86% of the total impact has been attributed to diarrhea-related deaths, 12% to diarrhea-related illness, 

and 11% to malaria mortality (Cromar et al. 2021).25 Because the health-related impacts used in the GIVE model 

are also based on the results from Cromar, et al. (2021), which used the FUND model, here I focus solely on the 

FUND model’s health impacts. 

The additional number of deaths and illnesses from diarrheal diseases in region r in year t calculated in the FUND 

model is based on equation (4): 

 

where 

•                 diarrheal-related deaths (k=1) and illness (k=2) in region r in year t; 

• P r ,t = the population in region r in year t; 

• y r ,t = real per capita income in region r in year t ($1995); 

• y r ,1990 = real per capita income in region r in 1990 ($1995); 

• T r ,t  = average temperature in region r in year t;  

• T r ,PI = average pre-industrial temperature in region r; 

•         the mortality rate for diarrhea in the year 2000 in region r, based on data published by the  

World Health Organization; 

•  (k)= the income elasticity of diarrhea mortality (k=1: -1.58; k=2: -0.42); and 

• k  = a parameter reflecting the non-linearity of response mortality to regional warming (k=1: 

1.14; k=2: 0.70). 
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There are several problems with this specification, especially when considered over a 300-year time frame. First, 

reductions in deaths and illness are driven solely by changes in per capita income. There is no allowance for 

technological change, including the development of new vaccines and other new treatments. A good example of 

this is polio. As shown in Figure 3, prior to approval and production of the Salk polio vaccine in 1955, annual 

U.S. polio cases numbered in the thousands, peaking at just under 58,000 in 1952. In 1965, ten years after the 

vaccine was made available, total cases had fallen to 72. In the 30-year period, 1990 – 2019, the number of cases 

totaled 51, fewer than 2 each year on average. 

Figure 3: Polio Cases in the United States, 1910 – 2019. 

 

There already exist several vaccines against rotavirus, which is the leading cause of diarrhearelated deaths in 

young children. Moreover, as access to electricity increases in the poorest countries, basic sanitation, which is a 

root cause of diarrhea-related disease, will fall. Whereas the latter impact may be captured by changes in per-

capita income, as the experience with polio has shown, vaccine development represents a structural change, the 

timing of which cannot be predicted with certainty. But it is unreasonable to assume, as the FUND and GIVE 

models do, that no such developments will take place over the next 300 years. 

The formula used in the FUND model and by Cromar, et al. (2021) for vector-borne diseases is:26 

 

Where 

•                  disease v deaths per million people in region r in year t; 

•                     disease v deaths per million people in region r in 1990; 

• v  = an impact parameter, which does not vary by region, of the impact of climate change on 

the rate of vector-borne diseases for a one-degree global warming;27 

• 1990 T = the average world temperature in 1990; and 
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• T r ,t , y r ,t , y r ,1990 are defined as in equation (4). 

 

 

 

 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

  

 

 

 

As with the assumptions regarding deaths and illness from  diarrheal diseases, equation (5)  assumes that changes

in income levels will be the sole factor in decreasing the incidence of these  diseases, while changes in temperature

will be the sole factor leading to increasing incidences.28 This  ignores the likelihood of new health regimes to

combat this disease, especially when evaluating time  frames extending three centuries into the future.

5. ARE ALTERNATIVE APPROACHES BETTER THAN IAMS?
The problems with IAMs, including their reliance on parameters that are  guesswork (Pindyck  2013, 2017), along

with modeling issues and controversies over appropriate discount rates that should  be used to estimate SCC values,

has  caused  some  researchers  to  instead  emphasize  avoidance  of  catastrophic  climate  impacts.  For  example,

Pindyck (2019 uses this approach to estimate average SCC  values instead of the marginal SCC values estimated

by IAMs. Stern, et al., (2022) do not calculate  SCC values at all. Instead, they emphasize a similar “guardrail”

approach, which focuses on avoiding  catastrophic impacts that may occur, based on the results of other climate

models.

Pindyck (2019) conducted a survey of just over 6,800 economists and climate researchers. Of  the 1,000 responses

he received, he further narrowed the sample to exclude responses that were nonsensical  or had misunderstood the

survey  questions.  His  goal  was  to  estimate  average  SCC  values  based  on  the  surveyed  estimates  of  avoiding

catastrophic outcomes. He asked the surveyed individuals  to provide the reductions in GHGs needed to avoid

catastrophic climate impacts, which he defined  in terms of percentage reductions in world GDP over two different

time  horizons:  50  years  and  to  the  middle  of  the  next  century,  about  125  years  from  now.  Using  the  survey

responses, he tested different  probability distributions and then calculated the SCC values that would truncate

those distributions to  eliminate catastrophic outcomes, which he defined as a reduction in future GDP.

For example, Pindyck assumes a growth rate in real GDP of 2.0% per  year. In 2023, the World  Bank estimated

world GDP to be $106 trillion. At a 2.0% real growth rate, 50 years from now world  GDP would be $106 trillion

x (1.02)50 = $275 trillion. Pindyck defines a catastrophic impact on world  G as a reduction in that future GDP by

20% or more. Hence, using this definition, a catastrophic  impact would mean a world GDP of about $220 trillion,

still more than 100% greater than 2023 GDP.  (Given forecast population growth of about 20% according to the

United Nations, this means  that  GDP per capita would also increase.) He then calculates average SCC values as

the present value  reduction in future GDP divided by the present value reduction in GHGs, assuming that the cost

of  abatement remains constant in real dollar terms.29 The resulting SCC values averaged between $272  and $303

per metric ton, using a 3.0% discount rate. Using the probability distribution of GDP loss  that best fit the responses,

the overall average SCC value was $291. Pindyck then further trimmed the  responses to  examine values within

the 5th and 95th percentiles for respondents who expressed either  “low confidence” or “high confidence” in their

responses. Based on that, he concluded the “right”  SCC value was around $200/ metric ton for all respondents

and about $80/metric ton for respondentsexpressing “high confidence” in their answers.

While Pindyck’s approach avoids the problems associated with IAMs (discussed in more detail  below), it raises

ther questions. First, it is not known how respondents developed the estimates they  provided. Were the responsive

estimates of probabilities of  GDP losses based on the results of IAMs?  Were they based on pure guesswork?

Pindyck also disaggregated responses  between those expressing  “high confidence” in their answers and those who

did not. But the mere fact that someone expresses  high confidence in their answers does not mean those answers

are any more likely to be correct than  those who do not express high confidence.

Second,  Pindyck’s  selection  of  experts  was  based  on  publications  in  peer-reviewed  journals.But  if  academic

journals  are  more  likely  to  reject  contrary  viewpoints  that  challenge  conventional  wisdom,  then  the  experts

sampled will be biased.  Third,  because even catastrophic losses still leave future generations significantly better

off  based on GDP per capita, a broader question remains: the equity of forcing the current generation to

endure welfare losses in order to enrich future generations even more. While that is more a  philosophical issue

than a purely economic one, debates over current policies, such as subsidies for  electric vehicles that are primarily

purchased by wealthier consumers, and which are paid for by lesswealthy  ones raise the same  issue. However,
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that issue, and the broader one of whether the current generation’s welfare should be reduced to benefit future 

generations, and, if so, by how much, are rarely addressed. 

Kaufman, et al. (2020) recommend an entirely different approach, called Near-term to Net Zero (NT2NZ). Rather 

than attempting to estimate an SCC directly using IAMs, they propose setting a date for achieving net-zero GHG 

emissions and then determining the required emissions tax to achieve this goal. They claim this avoids the inherent 

uncertainties in estimating SCC values using IAMs. Yet, NT2NZ uses another IAM to estimate the carbon taxes 

that will be needed, along with other, unspecified, policies to achieve net-zero by the specified time. It also ignores 

the arbitrary specification of a net-zero date, which may be based on assumed climate tipping points, risk 

aversion,and so forth, none of which can be observed. 

Still more recently, Stern, et al. (2022) proposed an approach that incorporates aspects of NT2NZ with what they 

term a “guardrail approach.” They focus on the potential for catastrophic risk owing to climate tipping points, 

based on limiting temperature increases below 1.5 ⁰C. Ultimately, however, they do not suggest any specific 

policies to be adopted. 

Arguments for adopting NT2NZ and “guardrails” focus on assumed climate “tipping points” (Lenton, et al 2023) 

and climate catastrophes, however defined. These arguments lack any empirical basis and are instead based on 

modeling assumptions that cannot be verified. There is no evidence of climate “catastrophes” caused by increased 

GHG levels in earth’s past, even though atmospheric CO2 concentrations have been far higher previously. 

Weitzman’s “Dismal Theorem” (Weitzman 2009, 2014) assumes that, under certain conditions, we would be 

willing to spend an infinite amount of money to avoid a catastrophic outcome lacks practicality. For example, 

there is geologic evidence of cataclysmic events in the earth’s past, such as the asteroid impact that caused the 

Cretaceous–Paleogene extinction event about 66 million years ago, which led to the extinction of the dinosaurs 

and three-quarters of plant and animal species. 

(Five other mass extinctions occurred before then, such as the Permian-Triassic extinction that took place about 

252 million years ago and is believed to have been caused by volcanic activity.) That event clearly had a 

catastrophic impact on the climate. Such an event would fit well into Weitzman’s theorem. Given limited 

resources, it is impossible to devote infinite resources to preventing a single potential catastrophe, much less 

several. And there is no guarantee that the adopted spending level would avoid the catastrophe. 

6. CONCLUSIONS AND POLICY IMPLICATIONS 
The only certainty about long-term predictions is that they will ultimately prove to be incorrect. Yet, IAMs now 

rely on forecasts that extend 300 years or more into the future. Just as an individual living 300 years ago could 

not forecast the technologies we take for granted today, it is unreasonable to assume that we can accurately forecast 

the future centuries from now. New technologies will undoubtedly emerge, some of which we may not even 

conceive of today.  

Of course, it is impossible to devote infinite resources to address a single issue, much less multiple potential 

catastrophes (e.g., a civilization-ending asteroid strike or nuclear holocaust). Although we cannot completely rule 

out potential future catastrophes (of any sort), the reality is that society has limited resources and must make 

decisions about how best to allocate them. Hence, the question is whether SCC estimates should be used to drive 

energy policies and, if so, how. Answering that question requires confronting several economic and physical 

realities. First, global increases in GHG emissions are being driven by China and India (Figure 4). U.S. energy-

related emissions fell by 20% between 2000 and 2023. (On an inflation-adjusted basis, U.S. energy-related 

emissions per dollar of GDP fell by 50% over this same time.) In 2023, U.S. emissions accounted for just 13% of 

world emissions. That percentage has been decreasing for decades. 
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Figure 4: Energy Related CO2 Emissions, 2000 – 2023 

 

Source: Statistical Review of World Energy 2024; illustration by the author. 

China’s and India’s focus, like the developing nations in Africa, is on economic development. China alone is 

permitting hundreds of new coal-fired power plants, which will emit billions of metric tons of GHGs. Policies 

enacted by the U.S. and Europe that increase domestic energy costs or force consumers to purchase more 

expensive electric vehicles, install electric heat pumps, and more expensive appliances will reduce U.S. economic 

growth and well-being; it will not change the developing world’s focus on economic growth and improved well-

being for their existing residents. 

Using SCC estimates to justify these policies will not alter that fact. Nor will adopting arbitrary NT2NZ timelines 

or imposing specific emissions guardrails. Although the development and use of complex models to estimate the 

SCC is an interesting academic exercise, the resulting estimates are impractical for actual policy analysis. 

Moreover, the costs of these policies – such as the impact of higher energy prices on economic growth and 

consumer welfare – have been ignored. 

Fossil fuels still account for over 80% of total world energy consumption despite the trillions of dollars spent on 

green energy resources such as wind and solar, and the world will continue to depend on fossil fuels for the 

foreseeable future. Although the development and use of complex models to estimate the SCC is an interesting 

academic exercise, the resulting estimates are impractical for actual policy analysis. Rather than use arbitrary SCC 

estimates to justify green energy subsidies and mandates, a better focus for the U.S. would be to prioritize research 

and development of lower-cost, emissions-free, and nuclear power plants that use standardized designs. Doing so 

is likely to have a greater long-run impact on GHG emissions. Moreover, that technology can be transferred to 

developing nations to provide them with the reliable energy supplies they require for economic growth. Using 

SCC estimates to evaluate domestic energy policies will have no measurable impact on world climate. Hence, a 
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more effective policy approach would be to prioritize access to ample supplies of clean, reliable, and affordable 

energy to enhance societal well-being today. Rather than justify highcost policies to reduce carbon emissions by 

incorporating benefits based on arbitrary estimates of the SCC, policymakers can focus on funding basic research 

on clean energy technologies that will be able to provide the increasing quantities of affordable and reliable energy 

that society requires and enable developing countries to meet their demand for improved welfare. This approach 

will ensure more low-carbon energy is available while eliminating costly regulations based on either flawed IAMs 

or arbitrary net-zero timelines. 

7. BIBLOGRAHPY 
1. I thank Iddo Wernick and Richard O. Zerbe for their comments and suggestions. 

2. The approach used by Pindyck (2019) is discussed in Section 6. 

3. This paper is not a debate about whether climate change is real. 

4. In many cases, what the proposals promise are not true benefits, but rather wealth transfers. 

5. For ease of exposition, I focus on CO2 emissions. Other greenhouse gases (GHGs) lead to estimates of 

CO2 equivalent (CO2-e) emissions, based on the estimates of radiative forcing of these other GHGs. For 

a discussion of radiative forcing values, see Hodenbrag et al., (2020). 

6. EPA (2024), Tables 9-4 (fuel savings) and 9-10 (GHG reduction benefits). 

7. See, e.g., Lind, et al. (1982), Toth (1995), Cropper, et al. (2014), Greaves (2017), Rennert, et al. (2022). 

8. Weyant (2017) provides a survey of the different models. 

9. A regulatory impact analysis is the term used by EPA to describe a benefit-cost analysis. The EPA has 

also used a meta-analysis, based on the work of Howard and Sterner (2017). 

10. For a summary of some of the issues, see Weyant (2015). 

11. See also (Bauer, et al., 2017). “Shared Socio-Economic Pathways of the Energy Sector – Quantifying 

the Narratives,” 

12. See Jeremy Leggett, et al., 1922. “Emissions Scenarios for the IPCC: An Update,” in Climate Change 

1992 -The Supplementary Report to the IPCC Scientific Assessment, Volume 1, J.T. Houghton, B.A. 

Callander, and S.K. Varney (eds.) (Cambridge: Cambridge University Press, 1992), pp. 71-95; see also 

Nebjosa Nakicenovic and Rob Swart, 2000. “Emissions Scenarios: IPCC Special Report,” (Cambridge: 

Cambridge University Press 2000) 13. 

13. See the FUND model documentation under “Science,” Section 2. The model assumes population remains 

constant after that year and that per capita income grows at the same rate as assumed for the year 2300. 

14. FUND 3.9 Documentation, Section 3.1. The calculation is known as the “Kaya identity,” named after 

Yoichi Kaya. 

15. Antoff and Tol (2019). 

16. Leggett, et al., 1992. 

17. Lint Barrage and William Nordhaus, 2024. “Policies, projections, and the social cost of carbon: Results 

from the DICE-2023 model,” PNAS 121. https://doi.org/10.1073/pnas.2312030121 

18. The DICE model has a regional counterpart, RICE. 

19. Clouds have been acknowledged as one of the great uncertainties in climate modeling (Ceppi, et al. 

2017). 

20. For example, in the year 2100, the GIVE model results show an overall SCC of $663 per metric ton. Of 

that total, agricultural damages are $262 per metric ton, and health-related damages are $360 per metric 

ton. Additional energy consumption is $31 per metric ton and coastal impacts from sea level rise are just 

$4 per metric ton. The calculations can be found on the GIVE model website: 

https://www.rff.org/publications/data-tools/scc-explorer/ 

21. The supplementary information for Challinor, et al. (2017) does not report the results of their entire 

regression model. Instead, they report only four variables. One of those, a dummy variable for on-farm 

adaptation is never defined. In other words, from the article one does not know what “on-farm 

adaptation” even means, nor whether such adaptation is based on changes in temperature (the assumption 

in the model) or something else (e.g., changes in commodity prices, changes in fertilizer prices, crop 

rotation). 

22. The parameters and their standard deviations are shown in Table A of their model documentation. 

23. Equation (1) is a standard difference equation, which reaches a terminal value. 

https://www.rff.org/publications/data-tools/scc-explorer/
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24. The losses they estimate are incorporated into DSCIM. 

25. The FUND model also incorporates estimates of additional deaths associated with more intense tropical 

storms, although this clearly is a different form of health-related impact. 

26. The equation in Antoff and Tol (2009) does not show temperature defined by region, but the narrative 

states it refers to regional temperature in year t. I have modified equation (5) to reflect this. 

27. The malaria impact parameter reported by Antoff and Tol (2019) are not statistically different from zero. 

Interestingly, the impact factor for schistosomiasis is negative, meaning that, as temperatures increase, 

the rates of this disease fall. 

28. Snow, et al. (2017) contend that temperature changes alone do not account for changes in malaria 

incidence rates in Africa, which accounts for the majority of malaria deaths. 

29. Pindyck argues there are two countervailing factors. First, improved technology reduces abatement costs 

over time. But, second, the marginal cost of reducing additional emissions increases. Pindyck assumes 

these two factors balance out. 
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